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Abstract

(1) A staggered mesh compact difference scheme is presented for solving the unsteady
viscous incompressible Navier-Stokes equations. It is fourth order accurate both in the
spatial direction and in the time direction, at least third order accurate on the boundary;
(2) Describe a pressure-Poisson—equation that is equivalent to the discrete continuity
equation provided the discrete momentum equations remain. The discrete continuity
equation may have derivative boundary conditions, e.g., the compact difference scheme;
(3) A new ADI iterative method is proposed. The pressure-Poisson—equation is in the
discrete form. It is difficult to be solved with a usual ADI method. We translate it to be
tridiagonal in each spatial direction of each step of the ADI iterations, then add a pseudo
time term to get a tridiagonal equation which is easily to be solved; (4) The driven flow
in a square cavity with Re = 10000 is simulated numerically.

1. Introduction

With the developing of the electronic computers, more and more physical problems
can be simulated numerically. While there are still a lot of nonlinear problems need
too much CPU time and too large computer memory to calculate. The improvement of
the numerical methods can reduce the computer time and memory greatly, e.g., for a
two dimensional unsteady problem, in order to reduce the error to N~*, a second order
accurate scheme needs about (N?)? spatial and time grids, while a fourth order accurate
scheme needs only N? grids. The ratio of them is N3. The ratio for the computer time is
even more. N3 = 4096 when N = 16, N® ~ 1.678 x 107 when N = 256.

The advantages of compact difference schemes over traditional methods include the
relatively high order of accuracy using a compact stencil, a better (linear) stability, a better
resolution for high frequency wave,and usually fewer boundary points to handle.[8:1:2:3:5:6:10]
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With a three points stencil in each time level, the scheme in this paper achieves fourth
order accurate both in the spatial direction (§2.2) and in the time direction (§2.4), at
least third order accurate on the boundary (§2.3). This paper is a revised version of [9].

2. A Fourth Order Accurate Staggered Mesh Compact Difference Scheme

The compact difference scheme in this paper improves in the treatment of the pressure
boundary differences, and the discretization of the time derivative in [1][2].
2.1 The Unsteady Viscous Incompressible Navier—Stokes Equations:

aa—‘fu(vnw:o, in Q (where A(V)=(V-V)V-—»VV), (2.1)

divV =0, in 0 (2.2)

2.2 A Two Dimensional Staggered Mesh Compact Difference Scheme

The compact difference scheme described in this section has the fourth order accuracy
for the spatial discretization of (2.1)(2.2), the first order accuracy for the time derivative
n (2.1). We consider the discrete form of (2.1)(2.2)

Vn+1 o V*

Az + V"t =0, (here V' =V" — AtA,(V")), (2.3)

div, V" =0, (2.4)

where V" = (u",v"), A(V') = (g + vy — V(Ugg + Uyy ), W0z + 00y — V(Vgg + Vyy ) ), An, Vi,
divy, are discrete forms of A, V, div respectively:
(1) ug, uy in Ap(V")(vg, vy in Ap(V™) similar):
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(2) Ugg, Uyy in Ap(V")(Vgg, Uyy in Ay (V™) similar):
n n n
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(3) pz in V4p ( py, similar):
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(4) ug in divy V' (v, in div,V similar):

! ! !
U 1+ 2 1+ . 1 — Uy
W gy T2 il ir Uggir— U0

= 2.8
24 Az ’ (2:8)
(5) win uuy in (V- V)V oy 0, 0in vy 1 v;1 5, 6 in uvg:
Uu; ij—3 1+ Uy J—3% +u; g+ 1+ uz—l—l,]-i—— 1
Uip Ll = 4 g[(Aﬂ?)Zuzz + (Ay)Quyy]H%,j, (2.9)

where ,,, Uy, can be get from the results of (2.6), v in vu, similar,

(6) for V;: (2.3) uses the first order accurate difference. A fourth order accurate
Runge-Kutta algorithm is given in §2.4.
2.3 Difference Formulae on the Boundary

Set Q = {(z,9)|0 <z < 1,0 <y < 1},Az = Ay = 1/N. Consider the boundary
condition V|r = V = (ul, vr) where [' = 09). We describe the difference formulae on
the left edge = = 0.

(1)1 Uglo—o = —vy, (since (2.2)), (forv: wvyly—o = —uy) (2.10)

(1)2 v, at = 3Az and u, at y = 3Ay:

TV gty By tus | wg i (2.11)
4 Az 4 SAy ’
2)1 Ugg at = LAz (v, at y = LAy similar):
9 vy 9
" !
Buljey ¥ s Ouosiy =16y s +Tugsry Yoy (2.12)
9 6(Ax)? 3Az’ ’
where ug i = = —(v, Joj+1, cf (2.10),
(2)2 vze at z = 2Az ((uyy at y = 2Ay similar):
n n
5v%,j+v%,j :%. 2vp,5 — 3v1 ;T Vs (2.13)
6 3 Ax? ’ '
(3) pz at x = Az ( py at y = Ay similar):
/ / /
L iy T 2P+ T Psie1  DPajed Pl (2.14)
Prjt} 24 - Az ’ '

(2.14) improves the only second order accurate difference formula in [1] [2] to third order
accurate,
(4) up in divV  at z = Az (v, at y = LAy similar):

2ul .+ 15uh . Ul Up i1 — Uy i1
0.7 b} a+_ 7.7+_ 1a]+_ 05.7+_
2 128 2= 2 = zAx 2 (where ug,ﬂ% =—(vy)ojs1 ), (2.15)
(5) boundary values of Uy, Uy, in (2.9):
Ugle=Az — Ug|z=
u$$|z:%Am = w|w wa :c‘x 07 Uyy |z=0 = ’U,ZI;y z=0; (2-16)



where u|;—a, can be get from the results of (2.5), tg|s—0 = —v} |2—0 since (2.2).

2.4 The Fourth Order Accurate Runge-Kutta Method for the Time Derivative
Define f(V) = A,(V) + Vyp, where p = p(V') satisfies divy,(Ax(V) + Vypp) =0 .

Thus f is a function of V. To solve V; + f(V) = 0, we use the fourth order accurate

Runge-Kutta method:

yrtl _yn N ki + 2ky + 2ks + ky
At 6

where k1 = f(V"), ko = (V" — §tk1), ks = F(V" — §lko), ks = F(V" — Atks).

=0, (2.17)

3. A Pressure-Poisson-Equation that Satisfies the Equivalency !

Let us consider the following discrete scheme,(e.g., the compact difference scheme in
§2, and the second order accurate MAC schemel*),

Vn+1 . V*

A7 +Vpp"™ =0, (where V¥ =V" - AtA,(V")), (3.1)
div, V" = 0. (3.2)
n+l *
Define NSh = % + Vhan, (31)A

then (3.1) can be written to IN.S,=0.

To avoid divy (N S}) invalid, suppose (3.1) is defined on the difference mesh of V', e.g.,
for the staggered mesh scheme in §2:

NSh ~ ((NSh)iH_%, (NSh)?+%,j), VZ ~ (U’ZH%’ /U?—F%,j)'

We write div, V in the form containing the boundary conditions: D,(V,Vr, VVr), where
V is defined on the inner difference points, Vr = V|, VV = VV|r. (The compact
scheme in §2 does not use all components of V. It uses only the components which can be
get from V1 and the continuity equation: V(Vr-n) and V(Vr-7)-7, here n and 7 are
the unit normal and tangent vectors on I'. the MAC scheme [ does not use VVr, i.e.,
there is no derivative boundary condition in the continuity equation). Thus the discrete
continuity equation (3.2) can be written to

Dy (V™ Vit vVt = 0. (3.2)

From (3.1) (3.1)4, hence NS, =0,V""' —aN§;, =V""" (where « is an arbitrary
constant). Therefore from (3.2)" we get

Dy (V™! —aNS,, Vit vvith = . (3.3)

Theorem 3.1 For any arbitrary constant «, (3.3)(3.1) are equivalent to (3.2)(3.1).



Set a = At. Then (3.3) with (3.1) leads to the pressure-Poisson—equation

1
Dh(Vhpn+1, 0, 0) = Kch(V*’ V?—H, VV?—H) (34)
provided D,(V,Vr,VVTr) is a linear function of (V,Vr, VVr). RHS of (3.4) is
Ldiv,V* (cf (2.8)(2.15)) with V*|p = VI (VV*)r = VI (see Ug 1 i (2.15)).
LHS of (3.4) is diva(Vp"*") (see (2.7)(2.14) (2.8)(2.15)) with (Vp™+')r = 0, (see ug ;1
in (2.15)), ( V(Vp"*'))r = 0, (see uj i1 in (2.15)). These numerical boundary
J T3

conditions do not affect the result of p"*' by theorem 3.1. See [4] §6.3.1.

So we can solve the pressure-Poisson—equation (3.4) for p"™', i.e., use (3.4)(3.1) or

(3.3)(3.1) instead of (3.1)(3.2) to solve the Navier—-Stokes equations (2.1)(2.2).

4. A New ADI Iterative Method for Solving the Pressure—Poisson—Equation

It is difficult to solve the discrete pressure-Poisson-equation (3.4) with a usual ADI
method. We translate it to be tridiagonal in each spatial direction of each step of the
ADI iterations ((4.5)—(4.7)), then add a pseudo time term to get a tridiagonal equation
which is easily to be solved (see (4.7)), (a usual ADI method adds the pseudo time term
at the beginning). (3.4) can be written to

1

dth(Vhp) = At

div, V™", (+ boundary condition) (4.1)
The new ADI method in the z direction (similar in the y direction):

(1) calculate p, in V},p using the initial p or the last step p, and the formulae corre-
sponding to (2.7) (2.14):

(py)i+§,jfl + 22(py)i+%,j + (py)i+%,j+1 Pipljyl —DPiglj 1

24 = Ay a(] :253:"')5 (42)1

Pyiv11 = 2(y)ivio+ (Py)ivis  Pivis —Dip1n 49

(2) calculate py, in div,(Vjp) using the formulae corresponding to (2.8) (2.15):

(pyy)z’+§,j—1 + 22(pyy)i+§,j+§ + (pyy)i+§,j+% (py)i+§,j+1 - (py)H—%,j

3 — P —=1.9. ...
24 Ay ) (] ) bl )
(pyy)iJr%,o + (pyy)iJr%,% + (pyy)i+§,g _ (py)iqt%,l (py)i+§,0
18 N Ay ’
((py)H-%,O =0, (pyy)i+%,0 =0)
(3)  Pas = 5divi V" — py, (4.4)

(4) solve the equations corresponding to (2.8) (2.15) for p, with the recursion
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—correction method:

(pzm)i—%,j—‘,—% + 22(pm)i+§,j+§ + (pmm)i+g,j+% (pl‘)i—l—l,j+% - (pl‘)z',j—}-%

24 Az (7 200

4.

2(p;m)(),j_|_% + 15(pww)%,j+% + (pww)%,ﬂ_% _ (pw)1,j+% - (pm)o,j+% ( 5)

18 Az ’
( (pw)o,j+% =0, (pzz)o,j+% =0)
(5) calculate the LHS of (2.7) and (2.14):
(pm)z’— j+1 +22(p$)z" 1+ (px)z j+3
(p;;)l +l — 15J+2 =]+2 +1;J+2 , (Z — 2’ 3,4’ .. .)
I3 24

(4.6)

* 25(p$)1,j+% - 2(pw)2,j+% + (pw)3,j+%
(pl‘)l,]-f-% = 24 9

(6) differencing (2.7) (2.14), adding a pseudo time term, the resulting equation on p
is tridiagonal as follows, solve it to get p

k *
(pm)i+1,j+§ (pz)i,j—i—% _ Piij4l T 2Pi+§,j+% tPiyg 4l Piyljyl
Ax (Ax)? At,

(Po)ijes  P3ged —Pijel Pl (4.7
Az (Ax)? AV
The corresponding formulae on the right and the upper boundaries can be obtained by
translating (4.2), (4.3)2, (4.5)2, (4.6)2, (4.7)2 by:
1—> N—i,Ax - —Azx and j - N — j, Ay — —Ay.
The computations in this paper and in [1] were performed by the above ADI method.

5. Computations of the Driven Flow in a Square Cavity

Consider the Navier-Stokes equations (2.1) (2.2) on 0 < z < 1,0 < y < 1 with
boundary conditions V' = (—1,0), (on y=1), V=(0,0), (on y = 0, z = 0, z = 1),
Re = 1/v =10000. We simulate the driven flow in a square cavity with the staggered
mesh compact difference scheme with Az = Ay = 1/N, where N = 256.

To verify the equivalency (theorem 3.1) further, in [1] we used a coarse grid (/N = 8),
ADI iterations, reduced the error to |div, V| < 107! in the calculation. Here we adopt a
multigrid method, N = 256, Re = 10000, reduce the error to |div,V| < 6 x 107!, This
shows the pressure-Poisson—equation (4.1) (or (3.4)) can replace the continuity equation
div,V = 0 (suppose retaining the momentum equation (3.1)).

The streamlines (in figure 1) are contours of the stream function . In order to obtain
1, here we solve a Poisson equation deduced from

Yijr1 — Vi o (Ay)Z VYig1,; — Vi . (A$)2

ay ety e T T Tl ) (G



where u,,, vz, are at least second order accurate, (then (5.2) with (5.1) is a fourth order
accurate approximation of the continuity equation (2.2),

(V1,501 — Yiz1) — Wi — Vig)] = [(Yir1541 — Vi) — (igr; — i)l =0 (5.2)

As aresult, (2.3)-(2.7),(5.1),(5.2),(2.9)—(2.14),(2.16) is another fourth order accurate com-
pact difference scheme for solving the Navier-Stokes equations (2.1)(2.2)).
|| - || in figure 3 is defined by

V= ( g+ Fwn? ). V=wo). 63

V4 = V‘t:t1+536.6557 V5 = V‘t:t1+542.340-

The computing time of the results in [2] was relatively short. Here we employ the
multigrid method for computation of the pressure. Longer calculation shows that the
time period of the numerical solution is about 7" = 6.727, approximating 7' = 6.36 (the
period given in [3]). It can be seen that the numerical solution is still not completely
periodic. In figure 3 near t = ¢; + 549

min [|(V |zt 4nae) = Vsl = [(Vlztytmar) = Vsl 2 1.13 x 107°.
With careful calculations we can get

0512%11100 I(Vli=tr 4 maatsna/io0) — V|| = 7.15 x 107°.

The results in [3] demonstrates that the period shown by the figures of the streamlines
is a quarter of that shown by the figure of the velocity at the geometric center. [7] gave
an analogous result. This coincides with the results in figure 3 and figure 2 here. From
figure 2, u(3, 3,) and v(3, 3,t) can be approximated by

LA(t)| sin(27t/T + 6,) + | B(¢)| sin(2mt/ (T/4) + 85) + C(2), (5.4)

where T also changes with time ¢, | B| becomes positive in figure 2a, |B| = |A| in figure
2b, |B|> |A| in figure 2c.
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